Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception.
نویسندگان
چکیده
Spinal cord neurons respond to peripheral noxious stimuli and relay this information to higher brain centers, but the molecules controlling the assembly of such pathways are poorly known. In this study, we use the intersection of Lmx1b and Hoxb8::Cre expression in the spinal cord to genetically define nociceptive circuits. Specifically, we show that Lmx1b, previously shown to be expressed in glutamatergic dorsal horn neurons and critical for dorsal horn development, is expressed in nociceptive dorsal horn neurons and that its deletion results in the specific loss of excitatory dorsal horn neurons by apoptosis, without any effect on inhibitory neuron numbers. To assess the behavioral consequences of Lmx1b deletion in the spinal cord, we used the brain-sparing driver Hoxb8::Cre. We show that such a deletion of Lmxb1 leads to a robust reduction in sensitivity to mechanical and thermal noxious stimulation. Furthermore, such conditional mutant mice show a loss of a subpopulation of glutamatergic dorsal horn neurons, abnormal sensory afferent innervations, and reduced spinofugal innervation of the parabrachial nucleus and the periaqueductal gray, important nociceptive structures. Together, our results demonstrate an important role for the intersection of Lmx1b and Hoxb8::cre expression in the development of nociceptive dorsal horn circuits critical for mechanical and thermal pain processing.
منابع مشابه
Lmx1b controls the differentiation and migration of the superficial dorsal horn neurons of the spinal cord.
The differentiation and migration of superficial dorsal horn neurons and subsequent ingrowth of cutaneous afferents are crucial events in the formation of somatosensory circuitry in the dorsal spinal cord. We report that the differentiation and migration of the superficial dorsal horn neurons are regulated by the LIM homeobox gene Lmx1b, and its downstream targets Rnx and Drg11, two transcripti...
متن کاملPtf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn.
Mutations in the human and mouse PTF1A/Ptf1a genes result in permanent diabetes mellitus and cerebellar agenesis. We show that Ptf1a is present in precursors to GABAergic neurons in spinal cord dorsal horn as well as the cerebellum. A null mutation in Ptf1a reveals its requirement for the dorsal horn GABAergic neurons. Specifically, Ptf1a is required for the generation of early-born (dI4, E10.5...
متن کاملPropofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats
Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signal...
متن کاملKainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn.
Presynaptic kainate (KA) receptors regulate synaptic transmission at both excitatory and inhibitory synapses in the spinal cord dorsal horn. Previous work has demonstrated pharmacological differences between the KA receptors expressed by rat dorsal horn neurons and those expressed by the primary afferent sensory neurons that innervate the dorsal horn. Here, neurons isolated from KA receptor sub...
متن کاملMetabotropic glutamate receptor 5 regulates excitability and Kv4.2-containing K⁺ channels primarily in excitatory neurons of the spinal dorsal horn.
Metabotropic glutamate (mGlu) receptors play important roles in the modulation of nociception. Previous studies demonstrated that mGlu5 modulates nociceptive plasticity via activation of ERK signaling. We have reported recently that the Kv4.2 K(+) channel subunit underlies A-type currents in spinal cord dorsal horn neurons and that this channel is modulated by mGlu5-ERK signaling. In the presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 13 شماره
صفحات -
تاریخ انتشار 2015